
Views in SQL
o Views in SQL are considered as a virtual table. A view also contains rows and columns.

o To create the view, we can select the fields from one or more tables present in the database.

o A view can either have specific rows based on certain condition or all the rows of a table.

Sample table:

Student_Detail

STUD_ID NAME ADDRESS

1 Stephan Delhi

2 Kathrin Noida

3 David Ghaziabad

4 Alina Gurugram

Student_Marks

STUD_ID NAME MARKS AGE

1 Stephan 97 19

2 Kathrin 86 21

3 David 74 18

4 Alina 90 20

5 John 96 18

Creating a View:

A view can be created using the CREATE VIEW statement. We can create a view from a single table

or multiple tables.

Syntax:

CREATE VIEW view_name AS

SELECT column1, column2.....

FROM table_name

WHERE condition;

Creating View from a single table
In this example, we create a View named DetailsView from the table Student_Detail.

Query:

CREATE VIEW DetailsView AS

SELECT NAME, ADDRESS

FROM Student_Details

WHERE STU_ID < 4;

Just like table query, we can query the view to view the data.

SELECT * FROM DetailsView;

Output:

NAME ADDRESS

Stephan Delhi

Kathrin Noida

David Ghaziabad

Creating View from multiple tables

View from multiple tables can be created by simply include multiple tables in the SELECT statement.
In the given example, a view is created named MarksView from two tables Student_Detail and
Student_Marks.

Query:

CREATE VIEW MarksView AS

SELECT Student_Detail.NAME, Student_Detail.ADDRESS, Student_Marks.MARKS

FROM Student_Detail, Student_Mark

WHERE Student_Detail.NAME = Student_Marks.NAME;

To display data of View MarksView:

SELECT * FROM MarksView;

NAME ADDRESS MARKS

Stephan Delhi 97
Kathrin Noida 86
David Ghaziabad 74
Alina Gurugram 90

Deleting View

A view can be deleted using the Drop View statement.

Syntax

DROP VIEW view_name;

Example:

If we want to delete the View MarksView, we can do this as:
DROP VIEW MarksView;

SQL Updating a View

A view can be updated with the CREATE OR REPLACE VIEW statement.

SQL CREATE OR REPLACE VIEW

Syntax

CREATE OR REPLACE VIEW view_name AS
SELECT column1, column2, ...
FROM table_name
WHERE condition;

There are certain conditions needed to be satisfied to update a view. If any one of these
conditions is not met, then we will not be allowed to update the view.
1. The SELECT statement which is used to create the view should not include GROUP BY

clause or ORDER BY clause.
2. The SELECT statement should not have the DISTINCT keyword.

3. The View should have all NOT NULL values.
4. The view should not be created using nested queries or complex queries.
5. The view should be created from a single table. If the view is created using multiple tables

then we will not be allowed to update the view.

For example, if we want to update the view MarksView and add the field AGE to this View
from StudentMarks Table, we can do this as:

CREATE OR REPLACE VIEW MarksView AS

SELECT StudentDetails.NAME, StudentDetails.ADDRESS, StudentMarks.MARKS,
StudentMarks.AGE

FROM StudentDetails, StudentMarks

WHERE StudentDetails.NAME = StudentMarks.NAME;

If we fetch all the data from MarksView now as:

SELECT * FROM MarksView;

Output:
 Name Address Marks Age

 Harsh Kolkata 90 19

 Pratik Delhi 80 19

 Dhanraj Bihar 95 21

 Ram Rajasthan 85 18

Inserting a row in a view:

We can insert a row in a View in a same way as we do in a table. We can use the INSERT
INTO statement of SQL to insert a row in a View.

Syntax:
INSERT INTO view_name(column1, column2 , column3,..)

VALUES(value1, value2, value3..);

view_name: Name of the View

Example:

In the below example we will insert a new row in the View DetailsView which we have
created above in the example of “creating views from a single table”.

INSERT INTO DetailsView(NAME, ADDRESS)

VALUES("Suresh","Gurgaon");

If we fetch all the data from DetailsView now as,

SELECT * FROM DetailsView;

Output:

 Name Address

 Harsh Kolkata

 Ashish Durgapur

 Pratik Delhi

 Dhanraj Bihar

 Suresh Gurgaon

VIEWS WITH CHECK OPTION
The WITH CHECK OPTION clause in SQL is a very useful clause for views. It is applicable
to a updatable view. If the view is not updatable, then there is no meaning of including this
clause in the CREATE VIEW statement.

• The WITH CHECK OPTION clause is used to prevent the insertion of rows in the view
where the condition in the WHERE clause in CREATE VIEW statement is not satisfied.

• If we have used the WITH CHECK OPTION clause in the CREATE VIEW statement, and
if the UPDATE or INSERT clause does not satisfy the conditions then they will return an
error.

Example:
In the below example we are creating a View SampleView from StudentDetails Table with
WITH CHECK OPTION clause.

CREATE VIEW SampleView AS

SELECT S_ID, NAME

FROM StudentDetails

WHERE NAME IS NOT NULL

WITH CHECK OPTION;

In this View if we now try to insert a new row with null value in the NAME column then it will
give an error because the view is created with the condition for NAME column as NOT NULL.
For example,though the View is updatable but then also the below query for this View is not
valid:

INSERT INTO SampleView(S_ID)

VALUES(6);

NOTE: The default value of NAME column is null.

Uses of a View :
A good database should contain views due to the given reasons:
1. Restricting data access –

Views provide an additional level of table security by restricting access to a predetermined
set of rows and columns of a table.

2. Hiding data complexity –
A view can hide the complexity that exists in a multiple table join.

3. Simplify commands for the user –
Views allows the user to select information from multiple tables without requiring the users
to actually know how to perform a join.

4. Store complex queries –
Views can be used to store complex queries.

5. Rename Columns –
Views can also be used to rename the columns without affecting the base tables provided
the number of columns in view must match the number of columns specified in select
statement. Thus, renaming helps to to hide the names of the columns of the base tables.

6. Multiple view facility –
Different views can be created on the same table for different users.

